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We obtain new properties of d-dimensional lattice ferromagnetic classical
N-component vector spin systems in the high temperature region. Each model is
characterized by a single site a priori single spin probability distribution (sspd)
which we take to be rotationally invariant. Associated with the model is a
discrete imaginary time lattice quantum field theory which is known to contain
particles of mass m. Letting O ·P denote the sspd expectation we show that there
exists two bound states below but near the two-particle threshold 2m if, with
sf=(s1, s2,..., sN), aN — O(sf · sf)2P−N+2N Osf 2P2 > 0; if aN < 0 there are no bound
states. These results are obtained using a lattice version of the Bethe–Salpeter
equation in a ladder approximation.

KEY WORDS: Transfer matrix spectrum; classical ferromagnetic O(N) spin
systems, decay of correlations; bound states; high-temperature ferromagnetic
spin systems; Gaussian domination inequalities.

In this paper we obtain new properties of d-dimension lattice ferromagnetic
classical vector spin systems in the high temperature region (b° 1). Each
such system is characterized by a single site ‘‘a priori’’ spin probability
distribution. Associated with the correlation functions (cf ’s) of a system is
an imaginary time lattice quantum field theory with Hamiltonian energy
and momentum operators living on a d−1 dimensional sublattice. The
Hamiltonian is minus the logarithm of the transfer matrix.(1, 2) The new
properties are found by a detailed study of the interaction of the particles
of this underlying field theory.



In the past much attention has been devoted to showing various cf
inequalities for these systems(1) in the case of scalar or two-component
(Abelian) spins. These inequalities, are used, for example to determine
bounds on critical temperature, bounds on critical exponents, exponential
decay above the critical point and triviality of some d \ 4 quantum field
theory models.(1)

In particular for a subclass of these models Gaussian domination
inequalities are shown. It is not known whether or not the equalities hold
for the case of three or more component spin systems. For Gaussian
domination inequalities in the case of a scalar spin (N=1), where OsmP
denotes the mth moment of the a priori single spin distribution, the ssd
moment expectations are required to obey the collection of inequalities

Os2kP [ (2k−1)(2k−3) · · · (3)(1)Os2P, k \ 2.

For a Gaussian ssd equality holds in the above. For these models the 4-pt.
cf decay rate is greater than or equal to twice the 2-pt. cf decay rate (see
ref. 1). In the case of the 4pt. function the decay rate is that associated with
the truncated 4pt. function with the points grouped into two pairs, each
pair taken at coinciding points.
Recently in refs. 3–5 we have determined the low-lying e-m spectrum

of a complementary class of models. In these models there is a richer par-
ticle spectrum and two-particle bound states occur which imply, for
example, that the 4-pt. cf decay rate is less than twice that of the 2-pt. cf.
Here we extend our determination of the e-m spectrum up to the two-
particle threshold to vector spin models with rotationally invariant ssd. Due
to the complexity of the interaction of the components of the spin we find a
rich 2-particle bound state spectrum for a class of models with ssd restric-
tions; if the restrictions do not hold no bounds states are present. The ssd
distribution restrictions that we find are generalizations to the case of
vector spins of the scalar and abelian spin ssd restrictions occurring in the
case of Gaussian domination. The new results on the spectrum and spectral
multiplicities are made precise below and go beyond the spectral results
obtained in refs. 4 and 5.
The partition function of the model we consider is given by the formal

expression

Z=F exp 5b C sf(x) · sf(y)6D
z
e−V(|sf(z)|) dsf(z)

where x=(xi, xf ) ¥ Zd, sf(x)=(s1(x), s2(x),..., sN(x)) ¥ RN and the sum is
over unordered nearest neighbor pairs. e−V(|sf(z)|) ds̄(x) is referred to as the
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single spin distribution and is taken to be rotationally invariant and even.
Also V(u) is bounded below and grows at infinity at least quadratically.
For small b > 0 infinite lattice correlation functions (cf ), denoted by

O ·P, are obtained by a polymer expansion, are translationally invariant,
analytic in b for small |b|, and truncated (connected) cf ’s have exponential
free decay. (1, 6)

An associated imaginary discrete time lattice quantum field theory is
constructed using standard methods furnishing a Hilbert spaceH, commut-
ing self-adjoint energy-momentum (e-m) operators H \ 0, Pk, k=1, 2,...,
d−1, time zero field operators ŝi(xf )=e iP

f ·xfŝie−iP
f ·xf and vacuum vector W.

Vacuum expectation values of products of imaginary-time Heisenberg
operators are related to cf by the Feynman–Kac (F-K) formula, for
xi(ti, xfi) and t1 [ t2 [ · · · [ tn,

(W, ŝi1e
−H(t2 −t1)e iPf · (xf2 −xf1)ŝi2 · · · e

−H(tn −tn−1)e−Pf · (xfn−xfn−1)ŝinW)

=Osi1 (x1) · · · sin (xn)P.

Decay rates of cf’s are related to the e-m spectrum, of the associated
quantum field theory and the low-lying e-m spectrum has a particle inter-
pretation. We state what is known about the spectrum generated by the
one-particle states ŝi(xf ) W and the two-particle states ŝi(xf ) ŝj(yf) W. E-m
spectral points are denoted by (E, pf ), E \ 0, pf ¥ Td−1 (the d−1 dimen-
sional torus) and the point (E, 0f ) is referred to as a mass.
The e-m spectrum associated with the one-particle states consists of an

isolated dispersion curvew(pf ) \ w(0f ) — m andm(b)=−ln N
bOsf 2P
− 2bOsf

2P(d−1)
N +

0(b2). Here we use Oski P to denote the ssd expectation. 2m is called the two-
particle threshold. For rotationally invariant states ŝ(xf ) · ŝ(yf ) W it is shown
in refs. 3–5 that there is a bound state with mass mb < 2m, but near 2m,
given by mb=2m− ln[

N(O(sf · sf )2P−Osf 2P2)

2Osf 2P2
]+0(b) if the ssd has the property that

aN — O(s · s)2P−N+2N Os · sP2 > 0.
If aN < 0 there is no bound state. For a Gaussian ssd aN=0 and there

is no mass spectrum in (m, 2m).
We now turn to the determination of all the mass spectrum in (m, 2m).

We recall from refs. 3–5 that a mass spectral point is detected as a
Im ko > 0 singularity in

(f̃, D̃(ko) f̃)

— F dpd−1 dqd−1f̃i2i1 (pf ) D̃i1i2i3i4 (pf, qf, k0) f̃i3i4 (qf )

=F
.

0
F
Td−1

sinh E
cosh E− cos ko

(2p)3(d−1) d(q̄) · d(h(f), E(E, qf ) h(f))
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whereE(E, qf ) is the spectral family associated withH, Pf . h(f)=; i, j, xf fij(xf )
hij(−xf ), xf ¥ Zd − 1, where hij(gf )=ŝi(0f ) ŝj(gf ) W−(W, ŝi(0f ) ŝj(gf ) W) W.
D̃(pf, qf, k) is the Fourier transform of the partially truncated 4-point cf

Di1i2i3i4 (x1x2x3x4) — Osi1 (x1) si2 (x2) si3 (x3) si4 (x4)P

−Osi1 (x1) si2 (x2)POsi3 (x3) si4 (x4)P

expressed in the relative coordinates tf=xf2−xf1, gf=xf4−xf3, y=x3−x2 with
momentum variables pf, qf, k respectively. By abuse of notation we denote it
by D(ef, gf, y), f is a function of the space variables only and
f̃ denotes its Fourier transform. The k0 in D̃(k0) means that we take
k=(k0, kf=0).
To analyze D we use a Bethe–Salpeter (B-S) equation for it which is

analogous to the resolvent equation associated with the non-relativistic
two-body quantum mechanical Hamiltonian where D is the analog of the
interacting resolvent and

D0i1i2i3i4 (x1x2x3x4) — Osi1 (x1) si3 (x3)POsi2 (x2) si4 (x4)P

+Osi1 (x1) si4 (x4)POsi2 (x2) si3 (x3)P

is the analog of the free Hamiltonian resolvent. Here the variables are
restricted by x01=x

0
2 and x

0
3=x

0
4, which we call equal times, and is different

than the case of Euclidean quantum field theory where there is no such
restriction (see refs. 7 and 8).
To obtain the B-S kernel of the B-S equation, the kernel variables

restricted to x01=x
0
2 and x

0
3=x

0
4, D=D

0+DKD0 we find, by expanding
the cf ’s in b using Osi(x) sj(y)P=sijOs

2
1P d(x, y)+0(b),

D0i2i2i3i4 (x1x2x3x4)

=5 sf
2

N
62 [di1i3 di2i4 d(x1x3) d(x2x4)+di1i4 di2i3 d(x1x4) d(x2x2)],

Di1i2i3i4 (x1x2x3x4)

=[di1i3 di2i4 d(x1x3) d(x2x4)

+di1i4 di2i3 d(x1x4) d(x2x3)]Os
2
1P
2+d(x1x2) d(x2x3) d(x3x4)

· {(di1i2 di3i4+di1i3 di2i4+di1i4 di2i3 ) · [Os
2
1s
2
2P−Os

2
1P
2]+di1i2 di2i3 di3i4

· [Os41P−3Os
2
1s
2
2P]}+0(b)
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and acting on functions fij(x, y) with x0=y0 and fij(x, y)=fij(y, x) we
have

(D0f)i1i2 (x1x2)=2 5
Osf 2P
N
62 fi1i2 (x1x2)+0(b),

(Df)i1i2 (x1x2)=2Os
2
1P
2 fi1i2 (x1x2)+d(x1x2) 35di1i2 C

k
fkk(x, x)

+2fij(x, x)] · [Os
2
1s
2
2P−Os

2
1P
2]

+dijfii(x, x)[Os
4
1P−3Os

2
1s
2
2P64+0(b).

Thus

(D−10 f)ij (x, y)=
1
2
1 N
Osf 2P
22 fij(x, y),

(D−1f)ij (x, y)=(1−d(x, y))
1

2Os21P
2 fij(x, y)+0(b)

+(1−dij)
1

2Os21s
2
2P
fij(x, x) d(x, y)

+dij d(x, y)
1

[Os41P−Os
2
1s
2
2P]
fii(x, x)

− c3 dij d(x, y) C
k
fkk(x, x),

and thus K=D−10 −D
−1 acting on f is

(Kf)ij (x, y)=(1−d(xy)) 0(b)+(1−dij) d(x, y) c1fij(x, x)

+dijc5 d(xy) fii(x, x)+dijc3 C
k
fkk(x, x).

In the above

c1=
1
2
5 1
Os21P

2−
1

Os21s
2
2P
6 , c5=

1
2Os21P

2−
1

[Os41P−Os
2
1s
2
2P]

and

c3=
Os21s

2
2P−Os

2
1P
2

[Os41P−Os
2
1s
2
2P][Os

4
1P+(N−1)Os

2
1s
2
2P−NOs

2
1P
2]
.
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In terms of the spin zero and spin two tensor projections

P0i1i2i3i4=di1i2
1
N

C
k
dki3 dki4 ,

P2i1i2i3i4=
1
2
5di1i3 di2i4+di1i4 di2i3 −

2
N
di1i2 C

k
dki3 dki4
6

we can write

(KP2f)ij (x, x)=c1(P2f)ij (x, x)+0(b)

(KP0f)ij (x, x)=[c2+(N−1) c3](P0f)ij (x, x)+0(b)

where c2=c5+c3. Thus c1 and c2+(N−1) c3 are the eigenvalues of K to
0(b) and they have the rotationally invariant forms

c1=
N2

2Osf 2P2
5O(sf · sf)P2−N+2N Osf · sfP2

O(sf · sf)2P
6 — l2

c2+(N−1) c3=
N2

2Osf 2P2
5O(sf · sf)P2− 2+NN Osf 2P2

O(sf · sf)2P−Osf 2P2
6 — l0

where we use the relations

Os21s
2
2P=

O(sf · sf)2P
N(N+2)

=
1
3
Os41P, O(sf · sf)

2P=NOs41P+N(N−1)Os
2
1s
2
2P.

These formulas are obtained by calculating the multi-dimensional
Gaussian integral > s41e−a | sf |

2
dNs in two ways: using Cartesian coordinates

and in spherical coordinates.
We call L, the b-independent approximation to K, the ladder approx-

imation, i.e., L(tf, gf, y)=d(tf ) d(gf ) d(y) a. It is local in the space-time coor-
dinates so that the B-S equation in relative coordinates and Fournier
transformed in the y variable only becomes

D̂(tf, gf )=D̂0(tf, gf )+D̂(tf, 0f ) aD̂0(0f , gf )

where we have suppressed the k=(k0, kf=0) dependence. a is the matrix
a=l0P0+l2P2. Setting gf=0 and solving for D̂(tf, 0f ) we find

D̂(tf, gf )=D̂0(tf, gf )+D̂0(tf, 0f )(1− a D̂0(0, 0))−1 a D̂0(0f , gf )
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where

D̂0i1i2i3i4 (0f , 0f )=F [Si1i3 (y) Si2i4 (y)+Si1i4 (y) Si2i3 (y)] · e
−ik0y0 dy0 dy

=(di1i3 di2i4+di1i4 di2i3 ) R=Qr

and r=> Os1(0) s1(y)P2 e−ik0y0 dy0 dyf. Q commutes with P0 and P2 so that

aDf 0(0f , 0f )=(l0P0+l2+P2) Qr

has eigenvalues 2l0r and 2l2r1 of multiplicity one and
N(N−1)
2 , respectively.

The k0 singularities of (f, D̃f) in Im k0 ¥ (0, 2m) come from the
solutions of, with k0=i(2m− e),

2li C
y0, yf

Os1(0) s1(y)P2e2my0e−ey0=1.

We give an intuitive argument for the bound state formula based on
the behavior of Os1(0) s1(y)P. A rigorous argument using the convolution
form in momentum space of the above condition and the spectral repre-
sentation of the two-point function can be given.
Expandinginb to leadingorderwehaveOs1(0) s1(y)P % b |y0|+|yf |Os21P

|y0|+|yf |+1.
This leading behavior follows by expanding the numerator in the two-

point function. There must be a chain of overlapping bonds connecting the
two-points (otherwise the integral over spins is zero) and upon taking a
chain of minimal length the above term results. To rigorously control all
contributions more sophisticated methods, i.e., the polymer expansion, are
used. Also

m=ln 1 N
bOsf 2P
2−2b 1Osf

2P

N
2 (d−1)+0(b2)

so that the bound state condition becomes, to leading order in b,

2Os21P
2 lk(1−e−ek)−1=1, k=0, 2,

or

e−e0=
2Osf 2P2

N(Osf · sf )2P−Osf 2P2)
,
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and

e−e2=
N+2
N

Osf 2P2

O(sf · sf)2P
.

In both cases the condition for the existence of a bound state, i.e., e−ek < 1,
k=0, 2 is

O(sf · sf)2P >
N+2
N

Osf 2P2.

The masses are given by − ln ek and we now show that the scalar
bound state mass 2m(b)−d0 is smaller than the spin two bound state mass
2m(b)−d2. This will be true if d2 < d0 or

ln
2O(sf · sf)2P

(N+2)(O(sf · sf)2P−Osf 2P2)
< 0

which holds if

O(sf · sf)2P >
N+2
N

Osf 2P2

which is precisely the condition imposed for the existence of the two bound
states.
We now show how to rigorously obtain the ladder approximation

equation for bound states. Using the spectral representation for the two-
point functions(4, 5) occurring in D0 we find that the action of D̃0(k0) on
functions with the property fij(pf )=fij(−pf ) is given by

(D̃0(k0) f)ij (pf )=2(2p)3(d−1) F
.

0
F
.

0

sinh(E+EŒ)
cosh(E+EŒ)− cos k0

· dspf(E) dspf(EŒ) fij(pf ),

i.e., multiplication by the function

H(pf, k0)=2(2p)3(d−1) F
.

0
F
.

0

sinh(E+EŒ)
cosh(E+EŒ)− cos k0

dspf(E) dspf(EŒ).

The B-S equation in momentum space is given by

D̃(pf, qf, k0)=D̃0(pf, qf, k0)+(2p)−2(d−1) F D̃(pf, pf Œ, k0)

· K̃(pf Œ, qf Œ, k0) D̃0(qf Œ, qf, k0) dpf Œ dqf Œ
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and suppressing the k0 dependence, we write

D̃=D̃0+(2p)−2(d−1) D̃K̃D̃0

=D̃0(1−(2p)−2(d−1) K̃D̃0)−1.

From the analysis of the two-pt. function

dspf(E)=Z(pf, b), d(E−w(pf )) dE+dŝpf(E)

where Z(pf, b)=(2p)−(d−1) Osf
2P

N (1+0(b)) and dŝpf(E) has support in (−(3−e)
ln |b|,.). Using the small b behavior of w(pf ) and setting k0=i(2m− e) we
find, dropping 0(b) terms, that

H(pf, i(2m(b)− e))=2(2p)d−1
Os21P

2

(1−e−e)
.

Also K̃=a so that

(K̃D̃0(k0) f)ij (pf )=F
Td−1
H(pf, k0)(af)ij (pf ) dpf.

The bound states are determined by eigenvalues of value 1 of
(2p)−2(d−1) K̃ D̃0(k0) which are found by taking fk(pf )=Pku, k=0, 2,
where u is a pf independent vector. Substituting fk(pf ) in the above leads to

lk FH(pf, k0) dpf=1=2lkOs21P2/(1−e−e),

i.e. the same condition for the existence of a bound state obtained pre-
viously.
Thus we have shown that for sufficiently high temperatures and in the

ladder approximation that there are precisely two bound states below the
two-particle threshold if aN > 0.
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